
14
__

Interactions with Solvers

This chapter describes in more detail a variety of mechanisms used by AMPL to con-
trol and adjust the problems sent to solvers, and to extract and interpret information
returned by them. One of the most important is the presolve phase, which performs sim-
plifications and transformations that can often reduce the size of the problem actually
seen by the solver; this is the topic of Section 14.1. Suffixes on model components per-
mit a variety of useful information to be returned by or exchanged with advanced solvers,
as described in Sections 14.2 and 14.3. Named problems enable AMPL scripts to manage
multiple problem instances within a single model and carry out iterative procedures that
alternate between very different models, as we show in Sections 14.4 and 14.5.

14.1 Presolve

AMPL’s presolve phase attempts to simplify a problem instance after it has been gen-
erated but before it is sent to a solver. It runs automatically when a solve command is
given or in response to other commands that generate an instance, as explained in Section
A.18.1. Any simplifications that presolve makes are reversed after a solution is returned,
so that you can view the solution in terms of the original problem. Thus presolve nor-
mally proceeds silently behind the scenes. Its effects are only reported when you change
option show_stats from its default value of 0 to 1:

ampl: model steelT.mod; data steelT.dat;
ampl: option show_stats 1;
ampl: solve;
Presolve eliminates 2 constraints and 2 variables.
Adjusted problem:
24 variables, all linear
12 constraints, all linear; 38 nonzeros
1 linear objective; 24 nonzeros.

MINOS 5.5: optimal solution found.
15 iterations, objective 515033

275

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

276 INTERACTIONS WITH SOLVERS CHAPTER 14

You can determine which variables and constraints presolve eliminated by testing, as
explained in Section 14.2, to see which have a status of pre:

ampl: print {j in 1.._nvars:
ampl? _var[j].status = "pre"}: _varname[j];
Inv[’bands’,0]
Inv[’coils’,0]

ampl: print {i in 1.._ncons:
ampl? _con[i].status = "pre"}: _conname[i];
Init_Inv[’bands’]
Init_Inv[’coils’]

You can then use show and display to examine the eliminated components.
In this section we introduce the operations of the presolve phase and the options for

controlling it from AMPL. We then explain what presolve does when it detects that no
feasible solution is possible. We will not try to explain the whole presolve algorithm,
however; one of the references at the end of this chapter contains a complete description.

Activities of the presolve phase

To generate a problem instance, AMPL first assigns each variable whatever bounds are
specified in its var declaration, or the special bounds -Infinity and Infinity
when no lower or upper bounds are given. The presolve phase then tries to use these
bounds together with the linear constraints to deduce tighter bounds that are still satisfied
by all of the problem’s feasible solutions. Concurrently, presolve tries to use the tighter
bounds to detect variables that can be fixed and constraints that can be dropped.

Presolve initially looks for constraints that have only one variable. Equalities of this
kind fix a variable, which may then be dropped from the problem. Inequalities specify a
bound for a variable, which may be folded into the existing bounds. In the example of
steelT.mod (Figure 4-4) shown above, presolve eliminates the two constraints gener-
ated from the declaration

subject to Initial {p in PROD}: Inv[p,0] = inv0[p];

along with the two variables fixed by these constraints.
Presolve continues by seeking constraints that can be proved redundant by the current

bounds. The constraints eliminated from dietu.mod (Figure 5-1) provide an example:

ampl: model dietu.mod; data dietu.dat;
ampl: option show_stats 1;
ampl: solve;

Presolve eliminates 3 constraints.
Adjusted problem:
8 variables, all linear
5 constraints, all linear; 39 nonzeros
1 linear objective; 8 nonzeros.

MINOS 5.5: optimal solution found.
5 iterations, objective 74.27382022

SECTION 14.1 PRESOLVE 277

ampl: print {i in 1.._ncons:
ampl? _con[i].status = "pre"}: _conname[i];
Diet_Min[’B1’]
Diet_Min[’B2’]
Diet_Max[’A’]

On further investigation, the constraint Diet_Min[’B1’] is seen to be redundant
because it is generated from

subject to Diet_Min {i in MINREQ}:
sum {j in FOOD} amt[i,j] * Buy[j] >= n_min[i];

with n_min[’B1’] equal to zero in the data. Clearly this is satisfied by any combina-
tion of the variables, since they all have nonnegative lower bounds. A less trivial case is
given by Diet_Max[’A’], which is generated from

subject to Diet_Max {i in MAXREQ}:
sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

By setting each variable to its upper bound on the left-hand side of this constraint, we get
an upper bound on the total amount of the nutrient that any solution can possibly supply.
In particular, for nutrient A:

ampl: display sum {j in FOOD} amt[’A’,j] * f_max[j];
sum{j in FOOD} amt[’A’,j]*f_max[j] = 2860

Since the data file gives n_max[’A’] as 20000, this is another constraint that cannot
possibly be violated by the variables.

Following these tests, the first part of presolve is completed. The remainder consists
of a series of passes through the problem, each attempting to deduce still tighter variable
bounds from the current bounds and the linear constraints. We present here only one
example of the outcome, for the problem instance generated from multi.mod and
multi.dat (Figures 4-1 and 4-2):

ampl: model multi.mod;
ampl: data multi.dat;
ampl: option show_stats 1;
ampl: solve;

Presolve eliminates 7 constraints and 3 variables.
Adjusted problem:
60 variables, all linear
44 constraints, all linear; 165 nonzeros
1 linear objective; 60 nonzeros.

MINOS 5.5: optimal solution found.
41 iterations, objective 199500

ampl: print {j in 1.._nvars:
ampl? _var.status[j] = "pre"}: _varname[j];
Trans[’GARY’,’LAN’,’plate’]
Trans[’CLEV’,’LAN’,’plate’]
Trans[’PITT’,’LAN’,’plate’]

278 INTERACTIONS WITH SOLVERS CHAPTER 14

ampl: print {i in 1.._ncons:
ampl? _con[i].status = "pre"}: _conname[i];
Demand[’LAN’,’plate’]
Multi[’GARY’,’LAN’]
Multi[’GARY’,’WIN’]
Multi[’CLEV’,’LAN’]
Multi[’CLEV’,’WIN’]
Multi[’PITT’,’LAN’]
Multi[’PITT’,’WIN’]

We can see where some of the simplifications come from by expanding the eliminated
demand constraint:

ampl: expand Demand[’LAN’,’plate’];
subject to Demand[’LAN’,’plate’]:

Trans[’GARY’,’LAN’,’plate’] + Trans[’CLEV’,’LAN’,’plate’] +
Trans[’PITT’,’LAN’,’plate’] = 0;

Because demand[’LAN’,’plate’] is zero in the data, this constraint forces the sum
of three nonnegative variables to be zero, as a result of which all three must have an
upper limit of zero in any solution. Since they already have a lower limit of zero, they
may be fixed and the constraint may be dropped. The other eliminated constraints all
look like this:

ampl: expand Multi[’GARY’,’LAN’];
subject to Multi[’GARY’,’LAN’]:

Trans[’GARY’,’LAN’,’bands’] + Trans[’GARY’,’LAN’,’coils’] +
Trans[’GARY’,’LAN’,’plate’] <= 625;

They can be dropped because the sum of the upper bounds of the variables on the left is
less than 625. These variables were not originally given upper bounds in the problem,
however. Instead, the second part of presolve deduced their bounds. For this simple
problem, it is not hard to see how the deduced bounds arise: the amount of any product
shipped along any one link cannot exceed the demand for that product at the destination
of the link. In the case of the destinations LAN and WIN, the total demand for the three
products is less than the limit of 625 on total shipments from any origin, making the
total-shipment constraints redundant.

Controlling the effects of presolve

For more complex problems, presolve’s eliminations of variables and constraints may
not be so easy to explain, but they can represent a substantial fraction of the problem.
The time and memory needed to solve a problem instance may be reduced considerably
as a result. In rare cases, presolve can also substantially affect the optimal values of the
variables — when there is more than one optimal solution — or interfere with other pre-
processing routines that are built into your solver software. To turn off presolve entirely,
set option presolve to 0; to turn off the second part only, set it to 1. A higher value for
this option indicates the maximum number of passes made in part two of presolve; the
default is 10.

SECTION 14.1 PRESOLVE 279

Following presolve, AMPL saves two sets of lower and upper bounds on the variables:
ones that reflect the tightening of the bounds implied by constraints that presolve elimi-
nated, and ones that reflect further tightening deduced from constraints that presolve
could not eliminate. The problem has the same solution with either set of bounds, but the
overall solution time may be lower with one or the other, depending on the optimization
method in use and the specifics of the problem.

For continuous variables, normally AMPL passes to solvers the first set of bounds, but
you can instruct it to pass the second set by changing option var_bounds to 2 from its
default value of 1. When active-set methods (like the simplex method) are applied, the
second set tends to give rise to more degenerate variables, and hence more degenerate
iterations that may impede progress toward a solution.

For integer variables, AMPL rounds any fractional lower bounds up to the next higher
integer and any fractional upper bounds down to the next lower integer. Due to inaccura-
cies of finite-precision computation, however, a bound may be calculated to have a value
that is just slightly different from an integer. A lower bound that should be 7, for exam-
ple, might be calculated as 7.00000000001, in which case you would not want the bound
to be rounded up to 8! To deal with this possibility, AMPL subtracts the value of option
presolve_inteps from each lower bound, and adds it to each upper bound, before
rounding. If increasing this setting to the value of option presolve_intepsmax
would make a difference to the rounded bounds of any of the variables, AMPL issues a
warning. The default values of presolve_inteps and presolve_intepsmax are
1.0e–6 and 1.0e–5, respectively.

You can examine the first set of presolve bounds by using the suffixes .lb1 and
.ub1, and the second set by .lb2 and .ub2. The original bounds, which are sent to the
solver only if presolve is turned off, are given as .lb0 and .ub0. The suffixes .lb and
.ub give the bound values currently to be passed to the solver, based on the current val-
ues of options presolve and var_bounds.

Detecting infeasibility in presolve

If presolve determines that any variable’s lower bound is greater than its upper bound,
then there can be no solution satisfying all the bounds and other constraints, and an error
message is printed. For example, here’s what would happen to steel3.mod (Figure
1-5a) if we changed market["bands"] to 500 when we meant 5000:

ampl: model steel3.mod;
ampl: data steel3.dat;
ampl: let market["bands"] := 500;
ampl: solve;
inconsistent bounds for var Make[’bands’]:

lower bound = 1000 > upper bound = 500;
difference = 500

This is a simple case, because the upper bound on variable Make["bands"] has clearly
been reduced below the lower bound. Presolve’s more sophisticated tests can also find

280 INTERACTIONS WITH SOLVERS CHAPTER 14

infeasibilities that are not due to any one variable. As an example, consider the constraint
in this model:

subject to Time: sum {p in PROD} 1/rate[p]*Make[p] <= avail;

If we reduce the value of avail to 13 hours, presolve deduces that this constraint can’t
possibly be satisfied:

ampl: let market["bands"] := 5000;
ampl: let avail := 13;
ampl: solve;
presolve: constraint Time cannot hold:

body <= 13 cannot be >= 13.2589; difference = -0.258929

The ‘‘body’’ of constraint Time is sum {p in PROD} 1/rate[p]*Make[p], the
part that contains the variables (see Section 12.5). Thus, given the value of avail that
we have set, the constraint places an upper bound of 13 on the value of the body expres-
sion. On the other hand, if we set each variable in the body expression equal to its lower
bound, we get a lower bound on the value of the body in any feasible solution:

ampl: display sum {p in PROD} 1/rate[p]*Make[p].lb2;
sum{p in PROD} 1/rate[p]*(Make[p].lb2) = 13.2589

The statement from presolve that body <= 13 cannot be >= 13.2589 is thus report-
ing that the upper bound on the body is in conflict with the lower bound, implying that no
solution can satisfy all of the problem’s bounds and constraints.

Presolve reports the difference between its two bounds for constraint Time as
–0.258929 (to six digits). Thus in this case we can guess that 13.258929 is, approxi-
mately, the smallest value of avail that allows for a feasible solution, which we can
verify by experiment:

ampl: let avail := 13.258929;
ampl: solve;
MINOS 5.5: optimal solution found.
0 iterations, objective 61750.00214

If we make avail just slightly lower, however, we again get the infeasibility message:

ampl: let avail := 13.258928;
ampl: solve;
presolve: constraint Time cannot hold:

body <= 13.2589 cannot be >= 13.2589;
difference = -5.71429e-07

Setting $presolve_eps >= 6.86e-07 might help.

Although the lower bound here is the same as the upper bound to six digits, it is greater
than the upper bound in full precision, as the negative value of the difference indicates.

Typing solve a second time in this situation tells AMPL to override presolve and
send the seemingly inconsistent deduced bounds to the solver:

SECTION 14.1 PRESOLVE 281

ampl: solve;
MINOS 5.5: optimal solution found.
0 iterations, objective 61749.99714

ampl: option display_precision 10;

ampl: display commit, Make;
: commit Make :=
bands 1000 999.9998857
coils 500 500
plate 750 750
;

MINOS declares that it has found an optimal solution, though with Make["bands"]
being slightly less than its lower bound commit["bands"]! Here MINOS is applying
an internal tolerance that allows small infeasibilities to be ignored; the AMPL/MINOS doc-
umentation explains how this tolerance works and how it can be changed. Each solver
applies feasibility tolerances in its own way, so it’s not surprising that a different solver
gives different results:

ampl: option solver cplex;
ampl: option send_statuses 0;

ampl: solve;
CPLEX 8.0.0: Bound infeasibility column ’x1’.
infeasible problem.
1 dual simplex iterations (0 in phase I)

Here CPLEX has applied its own presolve routine and has detected the same infeasibility
that AMPL did. (You may see a few additional lines about a ‘‘suffix’’ named dunbdd;
this pertains to a direction of unboundedness that you can retrieve via AMPL’s solver-
defined suffix feature described in Section 14.3.)

Situations like this come about when the implied lower and upper bounds on some
variable or constraint body are equal, at least for all practical purposes. Due to impreci-
sion in the computations, the lower bound may come out slightly greater than the upper
bound, causing AMPL’s presolve to report an infeasible problem. To circumvent this dif-
ficulty, you can reset the option presolve_eps from its default value of 0 to some
small positive value. Differences between the lower and upper bound are ignored when
they are less than this value. If increasing the current presolve_eps value to a value
no greater than presolve_epsmax would change presolve’s handling of the problem,
then presolve displays a message to this effect, such as

Setting $presolve_eps >= 6.86e-07 might help.

in the example above. The default value of option presolve_eps is zero and
presolve_epsmax is 1.0e–5.

A related situation occurs when imprecision in the computations causes the implied
lower bound on some variable or constraint body to come out slightly lower than the
implied upper bound. Here no infeasibility is detected, but the presence of bounds that
are nearly equal may make the solver’s work much harder than necessary. Thus when-

282 INTERACTIONS WITH SOLVERS CHAPTER 14

ever the upper bound minus the lower bound on a variable or constraint body is positive
but less than the value of option presolve_fixeps, the variable or constraint body is
fixed at the average of the two bounds. If increasing the value of presolve_fixeps
to at most the value of presolve_fixepsmax would change the results of presolve, a
message to this effect is displayed.

The number of separate messages displayed by presolve is limited to the value of
presolve_warnings, which is 5 by default. Increasing option show_stats to 2
may elicit some additional information about the presolve run, including the number of
passes that made a difference to the results and the values to which presolve_eps and
presolve_inteps would have to be increased or decreased to make a difference.

14.2 Retrieving results from solvers

In addition to the solution and related numerical values, it can be useful to have cer-
tain symbolic information about the results of solve commands. For example, in a
script of AMPL commands, you may want to test whether the most recent solve encoun-
tered an unbounded or infeasible problem. Or, after you have solved a linear program by
the simplex method, you may want to use the optimal basis partition to provide a good
start for solving a related problem. The AMPL-solver interface permits solvers to return
these and related kinds of status information that you can examine and use.

Solve results

A solver finishes its work because it has identified an optimal solution or has encoun-
tered some other terminating condition. In addition to the values of the variables, the
solver may set two built-in AMPL parameters and an AMPL option that provide informa-
tion about the outcome of the optimization process:

ampl: model diet.mod;
ampl: data diet2.dat;

ampl: display solve_result_num, solve_result;
solve_result_num = -1
solve_result = ’?’

ampl: solve;
MINOS 5.5: infeasible problem.
9 iterations

ampl: display solve_result_num, solve_result;
solve_result_num = 200
solve_result = infeasible

SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS 283

ampl: option solve_result_table;
option solve_result_table ’\
0 solved\
100 solved?\
200 infeasible\
300 unbounded\
400 limit\
500 failure\
’;

At the beginning of an AMPL session, solve_result_num is -1 and
solve_result is ’?’. Each solve command resets these parameters, however, so
that they describe the solver’s status at the end of its run, solve_result_num by a
number and solve_result by a character string. The solve_result_table
option lists the possible combinations, which may be interpreted as follows:

solve_result values

number string interpretation

0- 99 solved optimal solution found
100-199 solved? optimal solution indicated, but error likely
200-299 infeasible constraints cannot be satisfied
300-399 unbounded objective can be improved without limit
400-499 limit stopped by a limit that you set (such as on iterations)
500-599 failure stopped by an error condition in the solver

Normally this status information is used in scripts, where it can be tested to distinguish
among cases that must be handled in different ways. As an example, Figure 14-1 depicts
an AMPL script for the diet model that reads the name of a nutrient (from the standard
input, using the filename - as explained in Section 9.5), a starting upper limit for that
nutrient in the diet, and a step size for reducing the limit. The loop continues running
until the limit is reduced to a point where the problem is infeasible, at which point it
prints an appropriate message and a table of solutions previously found. A representative
run looks like this:

ampl: commands diet.run;
<1>ampl? NA
<1>ampl? 60000
<1>ampl? 3000
--- infeasible at 48000 ---

: N_obj N_dual :=
51000 115.625 -0.0021977
54000 109.42 -0.00178981
57000 104.05 -0.00178981
60000 101.013 7.03757e-19
;

Here the limit on sodium (NA in the data) is reduced from 60000 in steps of 3000, until
the problem becomes infeasible at a limit of 48000.

The key statement of diet.run that tests for infeasibility is

284 INTERACTIONS WITH SOLVERS CHAPTER 14

__
__

model diet.mod;
data diet2.dat;

param N symbolic in NUTR;
param nstart > 0;
param nstep > 0;
read N, nstart, nstep <- ; # read data interactively

set N_MAX default {};
param N_obj {N_MAX};
param N_dual {N_MAX};
option solver_msg 0;

for {i in nstart .. 0 by -nstep} {
let n_max[N] := i;
solve;
if solve_result = "infeasible" then {

printf "--- infeasible at %d ---\n\n", i;
break;

}
let N_MAX := N_MAX union {i};
let N_obj[i] := Total_Cost;
let N_dual[i] := Diet[N].dual;

}
display N_obj, N_dual;

Figure 14-1: Sensitivity analysis with infeasibility test (diet.run).
__

if solve_result = "infeasible" then {
printf "--- infeasible at %d ---\n\n", i;
break;

}

The if condition could equivalently be written 200 <= solve_result_num < 300.
Normally you will want to avoid this latter alternative, since it makes the script more
cryptic. It can occasionally be useful, however, in making fine distinctions among differ-
ent solver termination conditions. For example, here are some of the values that the
CPLEX solver sets for different optimality conditions:

solve_result_num message at termination

0 optimal solution
1 primal has unbounded optimal face
2 optimal integer solution
3 optimal integer solution within mipgap or absmipgap

The value of solve_result is "solved" in all of these cases, but you can test
solve_result_num if you need to distinguish among them. The interpretations of
solve_result_num are entirely solver-specific; you’ll have to look at a particular
solver’s documentation to see which values it returns and what they mean.

AMPL’s solver interfaces are set up to display a few lines like

SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS 285

MINOS 5.5: infeasible problem.
9 iterations

to summarize a solver run that has finished. If you are running a script that executes
solve frequently, these messages can add up to a lot of output; you can suppress their
appearance by setting the option solver_msg to 0. A built-in symbolic parameter,
solve_message, still always contains the most recent solver return message, even
when display of the message has been turned off. You can display this parameter to ver-
ify its value:

ampl: display solve_message;
solve_message = ’MINOS 5.5: infeasible problem.\
9 iterations’

Because solve_message is a symbolic parameter, its value is a character string. It is
most useful in scripts, where you can use character-string functions (Section 13.7) to test
the message for indications of optimality and other outcomes.

As an example, the test in diet.run could also have been written

if match(solve_message, "infeasible") > 0 then {

Since return messages vary from one solver to the next, however, for most situations a
test of solve_result will be simpler and less solver-dependent.

Solve results can be returned as described above only if AMPL’s invocation of the
solver has been successful. Invocation can fail because the operating system is unable to
find or execute the specified solver, or because some low-level error prevents the solver
from attempting or completing the optimization. Typical causes include a misspelled
solver name, improper installation or licensing of the solver, insufficient resources, and
termination of the solver process by an execution fault (‘‘core dump’’) or a ‘‘break’’ from
the keyboard. In these cases the error message that follows solve is generated by the
operating system rather than by the solver, and you might have to consult a system guru
to track down the problem. For example, a message like can’t open at8871.nl
usually indicates that AMPL is not able to write a temporary file; it might be trying to
write to a disk that is full, or to a directory (folder) for which you do not have write per-
mission. (The directory for temporary files is specified in option TMPDIR.)

The built-in parameter solve_exitcode records the success or failure of the most
recent solver invocation. Initially –1, it is reset to 0 whenever there has been a successful
invocation, and to some system-dependent nonzero value otherwise:

ampl: reset;
ampl: display solve_exitcode;
solve_exitcode = -1

ampl: model diet.mod;
ampl: data diet2.dat;
ampl: option solver xplex;
ampl: solve;
Cannot invoke xplex: No such file or directory

286 INTERACTIONS WITH SOLVERS CHAPTER 14

ampl: display solve_exitcode;
solve_exitcode = 1024
ampl: display solve_result, solve_result_num;
solve_result = ’?’
solve_result_num = -1

Here the failed invocation, due to the misspelled solver name xplex, is reflected in a
positive solve_exitcode value. The status parameters solve_result and
solve_result_num are also reset to their initial values ’?’ and -1.

If solve_exitcode exceeds the value in option solve_exitcode_max, then
AMPL aborts any currently executing compound statements (include, commands,
repeat, for, if). The default value of solve_exitcode_max is 0, so that AMPL
normally aborts compound statements whenever a solver invocation fails. A script that
sets solve_exitcode_max to a higher value may test the value of
solve_exitcode, but in general its interpretation is not consistent across operating
systems or solvers.

Solver statuses of objectives and problems

Sometimes it is convenient to be able to refer to the solve result obtained when a par-
ticular objective was most recently optimized. For this purpose, AMPL associates with
each built-in solve result parameter a ‘‘status’’ suffix:

built-in parameter suffix

solve_result .result
solve_result_num .result_num
solve_message .message
solve_exitcode .exitcode

Appended to an objective name, this suffix indicates the value of the corresponding
built-in parameter at the most recent solve in which the objective was current.

As an example, we consider again the multiple objectives defined for the assignment
model in Section 8.3:

minimize Total_Cost:
sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];

minimize Pref_of {i in ORIG}:
sum {j in DEST} cost[i,j] * Trans[i,j];

After minimizing three of these objectives, we can view the solve status values for all of
them:

ampl: model transp4.mod; data assign.dat; solve;
CPLEX 8.0.0: optimal solution; objective 28
24 dual simplex iterations (0 in phase I)
Objective = Total_Cost

SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS 287

ampl: objective Pref_of[’Coullard’];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 1
3 simplex iterations (0 in phase I)
ampl: objective Pref_of[’Hazen’];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 1
5 simplex iterations (0 in phase I)

ampl: display Total_Cost.result, Pref_of.result;
Total_Cost.result = solved

Pref_of.result [*] :=
Coullard solved

Daskin ’?’
Hazen solved
Hopp ’?’

Iravani ’?’
Linetsky ’?’
Mehrotra ’?’

Nelson ’?’
Smilowitz ’?’

Tamhane ’?’
White ’?’

;

For the objectives that have not yet been used, the .result suffix is unchanged (at its
initial value of ’?’ in this case).

These same suffixes can be applied to the ‘‘problem’’ names whose use we describe
later in this chapter. When appended to a problem name, they refer to the most recent
optimization carried out when that problem was current.

Solver statuses of variables

In addition to providing for return of the overall status of the optimization process as
described above, AMPL lets a solver return an individual status for each variable. This
feature is intended mainly for reporting the basis status of variables after a linear program
is solved either by the simplex method, or by an interior-point (barrier) method followed
by a ‘‘crossover’’ routine. The basis status is also relevant to solutions returned by cer-
tain nonlinear solvers, notably MINOS, that employ an extension of the concept of a basic
solution.

In addition to the variables declared by var statements in an AMPL model, solvers
also define ‘‘slack’’ or ‘‘artificial’’ variables that are associated with constraints. Solver
statuses for these latter variables are defined in a similar way, as explained later in this
section. Both variables and constraints also have an ‘‘AMPL status’’ that distinguishes
those in the current problem from those that have been removed from the problem by pre-
solve or by commands such as drop. The interpretation of AMPL statuses and their rela-
tionship to solver statuses are discussed at the end of this section.

288 INTERACTIONS WITH SOLVERS CHAPTER 14

The major use of solver status values from an optimal basic solution is to provide a
good starting point for the next optimization run. The option send_statuses, when
left at its default value of 1, instructs AMPL to include statuses with the information about
variables sent to the solver at each solve. You can see the effect of this feature in
almost any sensitivity analysis that re-solves after making some small change to the prob-
lem.

As an example, consider what happens when the multi-period production example
from Figure 6-3 is solved repeatedly after increases of five percent in the availability of
labor. With the send_statuses option set to 0, the solver reports about 18 iterations
of the dual simplex method each time it is run:

ampl: model steelT3.mod;
ampl: data steelT3.dat;
ampl: option send_statuses 0;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 514521.7143
18 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 537104
19 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 560800.4
19 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 585116.22
17 dual simplex iterations (0 in phase I)

With send_statuses left at its default value of 1, however, only the first solve
takes 18 iterations. Subsequent runs take a few iterations at most:

ampl: model steelT3.mod;
ampl: data steelT3.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 514521.7143
18 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 537104
1 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 560800.4
0 simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 585116.22
1 dual simplex iterations (0 in phase I)

SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS 289

Each solve after the first automatically uses the variables’ basis statuses from the previ-
ous solve to construct a starting point that turns out to be only a few iterations from the
optimum. In the case of the third solve, the previous basis remains optimal; the solver
thus confirms optimality immediately and reports taking 0 iterations.

The following discussion explains how you can view, interpret, and change status val-
ues of variables in the AMPL environment. You don’t need to know any of this to use
optimal bases as starting points as shown above, but these features can be useful in cer-
tain advanced circumstances.

AMPL refers to a variable’s solver status by appending .sstatus to its name. Thus
you can print the statuses of variables with display. At the beginning of a session (or
after a reset), when no problem has yet been solved, all variables have the status
none:

ampl: model diet.mod;
ampl: data diet2a.dat;

ampl: display Buy.sstatus;
Buy.sstatus [*] :=
BEEF none
CHK none
FISH none
HAM none
MCH none
MTL none
SPG none
TUR none
;

After an invocation of a simplex method solver, the same display lists the statuses of
the variables at the optimal basic solution:

ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032

ampl: display Buy.sstatus;
Buy.sstatus [*] :=
BEEF bas
CHK low
FISH low
HAM upp
MCH upp
MTL upp
SPG bas
TUR low
;

Two of the variables, Buy[’BEEF’] and Buy[’SPG’], have status bas, which means
they are in the optimal basis. Three have status low and three upp, indicating that they
are nonbasic at lower and upper bounds, respectively. A table of the recognized solver
status values is stored in option sstatus_table:

290 INTERACTIONS WITH SOLVERS CHAPTER 14

ampl: option sstatus_table;
option sstatus_table ’\
0 none no status assigned\
1 bas basic\
2 sup superbasic\
3 low nonbasic <= (normally =) lower bound\
4 upp nonbasic >= (normally =) upper bound\
5 equ nonbasic at equal lower and upper bounds\
6 btw nonbasic between bounds\
’;

Numbers and short strings representing status values are given in the first two columns.
(The numbers are mainly for communication between AMPL and solvers, though you can
access them by using the suffix .sstatus_num in place of .sstatus.) The entries
in the third column are comments. For nonbasic variables as defined in many textbook
simplex methods, only the low status is applicable; other nonbasic statuses are required
for the more general bounded-variable simplex methods in large-scale implementations.
The sup status is used by solvers like MINOS to accommodate nonlinear problems. This
is AMPL’s standard sstatus_table; a solver may substitute its own table, in which
case its documentation will indicate the interpretation of the table entries.

You can change a variable’s status with the let command. This facility is some-
times useful when you want to re-solve a problem after a small, well-defined change. In
a later section of this chapter, for example, we employ a pattern-cutting model (Figure
14-2a) that contains the declarations

param nPAT integer >= 0; # number of patterns
set PATTERNS = 1..nPAT; # set of patterns
var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern

In a related script (Figure 14-3), each pass through the main loop steps nPAT by one,
causing a new variable Cut[nPAT] to be created. It has an initial solver status of
"none", like all new variables, but it is guaranteed, by the way that the pattern genera-
tion procedure is constructed, to enter the basis as soon as the expanded cutting problem
is re-solved. Thus we give it a status of "bas" instead:

let Cut[nPAT].sstatus := "bas";

It turns out that this change tends to reduce the number of iterations in each re-
optimization of the cutting problem, at least with some simplex solvers. Setting a few
statuses in this way is never guaranteed to reduce the number of iterations, however. Its
success depends on the particular problem and solver, and on their interaction with a
number of complicating factors:

• After the problem and statuses have been modified, the statuses conveyed
to the solver at the next solve may not properly define a basic solution.

• After the problem has been modified, AMPL’s presolve phase may send a
different subset of variables and constraints to the solver (unless option pre-
solve is set to zero). As a result, the statuses conveyed to the solver may

SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS 291

not correspond to a useful starting point for the next solve, and may not
properly define a basic solution.

• Some solvers, notably MINOS, use the current values as well as the statuses
of the variables in constructing the starting point at the next solve (unless
option reset_initial_guesses is set to 1).

Each solver has its own way of adjusting the statuses that it receives from AMPL, when
necessary, to produce an initial basic solution that it can use. Thus some experimentation
is usually necessary to determine whether any particular strategy for modifying the sta-
tuses is useful.

For models that have several var declarations, AMPL’s generic synonyms (Section
12.6) for variables provide a convenient way of getting overall summaries of statuses.
For example, using expressions like _var, _varname and _var.sstatus in a dis-
play statement, you can easily specify a table of all basic variables in steelT3.mod
along with their optimal values:

ampl: display {j in 1.._nvars: _var[j].sstatus = "bas"}
ampl? (_varname[j], _var[j]);
: _varname[j] _var[j] :=
1 "Make[’bands’,1]" 5990
2 "Make[’bands’,2]" 6000
3 "Make[’bands’,3]" 1400
4 "Make[’bands’,4]" 2000
5 "Make[’coils’,1]" 1407
6 "Make[’coils’,2]" 1400
7 "Make[’coils’,3]" 3500
8 "Make[’coils’,4]" 4200
15 "Inv[’coils’,1]" 1100
21 "Sell[’bands’,3]" 1400
22 "Sell[’bands’,4]" 2000
23 "Sell[’coils’,1]" 307
;

An analogous listing of all the variables would be produced by the command

display _varname, _var;

Solver statuses of constraints

Implementations of the simplex method typically add one variable for each constraint
that they receive from AMPL. Each added variable has a coefficient of 1 or –1 in its asso-
ciated constraint, and coefficients of 0 in all other constraints. If the associated constraint
is an inequality, the addition is used as a ‘‘slack’’ or ‘‘surplus’’ variable; its bounds are
chosen so that it has the effect of turning the inequality into an equivalent equation. If the
associated constraint is an equality to begin with, the added variable is an ‘‘artificial’’ one
whose lower and upper bounds are both zero.

An efficient large-scale simplex solver gains two advantages from having these ‘‘logi-
cal’’ variables added to the ‘‘structural’’ ones that it gets from AMPL: the linear program

292 INTERACTIONS WITH SOLVERS CHAPTER 14

is converted to a simpler form, in which the only inequalities are the bounds on the vari-
ables, and the solver’s initialization (or ‘‘crash’’) routines can be designed so that they
find a starting basis quickly. Given any starting basis, a first phase of the simplex method
finds a basis for a feasible solution (if necessary) and a second phase finds a basis for an
optimal solution; the two phases are distinguished in some solvers’ messages:

ampl: model steelP.mod;
ampl: data steelP.dat;

ampl: solve;
CPLEX 8.0.0: optimal solution; objective 1392175
27 dual simplex iterations (0 in phase I)

Solvers thus commonly treat all logical variables in much the same way as the structural
ones, with only very minor adjustments to handle the case in which lower and upper
bounds are both zero. A basic solution is defined by the collection of basis statuses of all
variables, structural and logical.

To accommodate statuses of logical variables, AMPL permits a solver to return status
values corresponding to the constraints as well as the variables. The solver status of a
constraint, written as the constraint name suffixed by .sstatus, is interpreted as the
status of the logical variable associated with that constraint. For example, in our diet
model, where the constraints are all inequalities:

subject to Diet {i in NUTR}:
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

the logical variables are slacks that have the same variety of statuses as the structural vari-
ables:

ampl: model diet.mod;
ampl: data diet2a.dat;

ampl: option show_stats 1;
ampl: solve;
8 variables, all linear
6 constraints, all linear; 47 nonzeros
1 linear objective; 8 nonzeros.
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032

ampl: display Buy.sstatus;
Buy.sstatus [*] :=
BEEF bas
CHK low
FISH low
HAM upp
MCH upp
MTL upp
SPG bas
TUR low
;

SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS 293

ampl: display Diet.sstatus;
diet.sstatus [*] :=

A bas
B1 bas
B2 low
C bas

CAL bas
NA upp
;

There are a total of six basic variables, equal in number to the six constraints (one for
each member of set NUTR) as is always the case at a basic solution. In our transportation
model, where the constraints are equalities:

subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

the logical variables are artificials that receive the status "equ" when nonbasic. Here’s
how the statuses for all constraints might be displayed using AMPL’s generic constraint
synonyms (analogous to the variable synonyms previously shown):

ampl: model transp.mod;
ampl: data transp.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 196200

ampl: display _conname, _con.slack, _con.sstatus;
: _conname _con.slack _con.sstatus :=
1 "Supply[’GARY’]" -4.54747e-13 equ
2 "Supply[’CLEV’]" 0 equ
3 "Supply[’PITT’]" -4.54747e-13 equ
4 "Demand[’FRA’]" -6.82121e-13 bas
5 "Demand[’DET’]" 0 equ
6 "Demand[’LAN’]" 0 equ
7 "Demand[’WIN’]" 0 equ
8 "Demand[’STL’]" 0 equ
9 "Demand[’FRE’]" 0 equ
10 "Demand[’LAF’]" 0 equ
;

One artificial variable, on the constraint Demand[’FRA’], is in the optimal basis,
though at a slack value of essentially zero like all artificial variables in any feasible solu-
tion. (In fact there must be some artificial variable in every basis for this problem, due to
a linear dependency among the equations in the model.)

AMPL statuses

Only those variables, objectives and constraints that AMPL actually sends to a solver
can receive solver statuses on return. So that you can distinguish these from components

294 INTERACTIONS WITH SOLVERS CHAPTER 14

that are removed prior to a solve, a separate ‘‘AMPL status’’ is also maintained. You
can work with AMPL statuses much like solver statuses, by using the suffix .astatus
in place of .sstatus, and referring to option astatus_table for a summary of the
recognized values:

ampl: option astatus_table;
option astatus_table ’\
0 in normal state (in problem)\
1 drop removed by drop command\
2 pre eliminated by presolve\
3 fix fixed by fix command\
4 sub defined variable, substituted out\
5 unused not used in current problem\
’;

Here’s an example of the most common cases, using one of our diet models:

ampl: model dietu.mod;
ampl: data dietu.dat;
ampl: drop Diet_Min[’CAL’];
ampl: fix Buy[’SPG’] := 5;
ampl: fix Buy[’CHK’] := 3;
ampl: solve;
MINOS 5.5: optimal solution found.
3 iterations, objective 54.76

ampl: display Buy.astatus;
Buy.astatus [*] :=
BEEF in
CHK fix
FISH in
HAM in
MCH in
MTL in
SPG fix
TUR in
;
ampl: display Diet_Min.astatus;
Diet_Min.astatus [*] :=

A in
B1 pre
B2 pre
C in

CAL drop
;

An AMPL status of in indicates components that are in the problem sent to the solver,
such as variable Buy[’BEEF’] and constraint Diet_Min[’A’]. Three other statuses
indicate components left out of the problem:

• Variables Buy[’CHK’] and Buy[’SPG’] have AMPL status "fix"
because the fix command was used to specify their values in the solution.

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES 295

• Constraint Diet_Min[’CAL’] has AMPL status "drop" because it was
removed by the drop command.

• Constraints Diet_Min[’B1’] and Diet_Min[’B2’] have AMPL sta-
tus "pre" because they were removed from the problem by simplifications
performed in AMPL’s presolve phase.

Not shown here are the AMPL status "unused" for a variable that does not appear in
any objective or constraint, and "sub" for variables and constraints eliminated by substi-
tution (as explained in Section 18.2). The objective command, and the problem
commands to be defined later in this chapter, also have the effect of fixing or dropping
model components that are not in use.

For a variable or constraint, you will normally be interested in only one of the statuses
at a time: the solver status if the variable or constraint was included in the problem sent
most recently to the solver, or the AMPL status otherwise. Thus AMPL provides the suf-
fix .status to denote the one status of interest:

ampl: display Buy.status, Buy.astatus, Buy.sstatus;
: Buy.status Buy.astatus Buy.sstatus :=
BEEF low in low
CHK fix fix none
FISH low in low
HAM low in low
MCH bas in bas
MTL low in low
SPG fix fix none
TUR low in low
;

ampl: display Diet_Min.status, Diet_Min.astatus,
ampl? Diet_Min.sstatus;
: Diet_Min.status Diet_Min.astatus Diet_Min.sstatus :=
A bas in bas
B1 pre pre none
B2 pre pre none
C low in low
CAL drop drop none
;

In general, name.status is equal to name.sstatus if name.astatus is "in",
and is equal to name.astatus otherwise.

14.3 Exchanging information with solvers via suffixes

We have seen that to represent values associated with a model component, AMPL
employs various qualifiers or suffixes appended to component names. A suffix consists
of a period or ‘‘dot’’ (.) followed by a (usually short) identifier, so that for example the
reduced cost associated with a variable Buy[j] is written Buy[j].rc, and the reduced

296 INTERACTIONS WITH SOLVERS CHAPTER 14

costs of all such variables can be viewed by giving the command display Buy.rc.
There are numerous built-in suffixes of this kind, summarized in the tables in A.11.

AMPL cannot anticipate all of the values that a solver might associate with model
components, however. The values recognized as input or computed as output depend on
the design of each solver and its algorithms. To provide for open-ended representation of
such values, new suffixes may be defined for the duration of an AMPL session, either by
the user for sending values to a solver, or by a solver for returning values.

This section introduces both user-defined and solver-defined suffixes, illustrated by
features of the CPLEX solver. We show how user-defined suffixes can pass preferences
for variable selection and branch direction to an integer programming solver. Sensitivity
analysis provides an example of solver-defined suffixes that have numeric values, while
infeasibility diagnosis shows how a symbolic (string-valued) suffix works. Reporting a
direction of unboundedness gives an example of a solver-defined suffix in an AMPL
script, where it must be declared before it can be used.

User-defined suffixes: integer programming directives

Most solvers recognize a variety of algorithmic choices or settings, each governed by
a single value that applies to the entire problem being solved. Thus you can alter selected
settings by setting up a single string of directives, as in this example applying the CPLEX
solver to an integer program:

ampl: model multmip3.mod;
ampl: data multmip3.dat;

ampl: option solver cplex;
ampl: option cplex_options ’nodesel 3 varsel 1 backtrack 0.1’;

ampl: solve;
CPLEX 8.0.0: nodesel 3
varsel 1
backtrack 0.1
CPLEX 8.0.0: optimal integer solution; objective 235625
1052 MIP simplex iterations
75 branch-and-bound nodes

A few kinds of solver settings are more complex, however, in that they require separate
values to be set for individual model components. These settings are far too numerous to
be accommodated in a directive string. Instead the solver interface can be set up to recog-
nize new suffixes that the user defines specially for the solver’s purposes.

As an example, for each variable in an integer program, CPLEX recognizes a separate
branching priority and a separate preferred branching direction, represented by an integer
in [0, 9999] and in [–1, 1] respectively. AMPL’s CPLEX driver recognizes the suffixes
.priority and .direction as giving these settings. To use these suffixes, we
begin by giving a suffix command to define each one for the current AMPL session:

ampl: suffix priority IN, integer, >= 0, <= 9999;
ampl: suffix direction IN, integer, >= -1, <= 1;

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES 297

The effect of these statements is to define expressions of the form name.priority and
name.direction, where name denotes any variable, objective or constraint of the cur-
rent model. The argument IN specifies that values corresponding to these suffixes are to
be read in by the solver, and the subsequent phrases place restrictions on the values that
will be accepted (much as in a param declaration).

The newly defined suffixes may be assigned values by the let command (Section
11.3) or by later declarations as described in Sections A.8, A.9, A.10, and A.18.8. For
our current example we want to use these suffixes to assign CPLEX priority and direction
values corresponding to the binary variables Use[i,j]. Normally such values are cho-
sen based on knowledge of the problem and past experience with similar problems. Here
is one possibility:

ampl: let {i in ORIG, j in DEST}
ampl? Use[i,j].priority := sum {p in PROD} demand[j,p];
ampl: let Use["GARY","FRE"].direction := -1;

Variables not assigned a .priority or .direction value get a default value of zero
(as do all constraints and objectives in this example), as you can check:

ampl: display Use.direction;

Use.direction [*,*] (tr)
: CLEV GARY PITT :=
DET 0 0 0
FRA 0 0 0
FRE 0 -1 0
LAF 0 0 0
LAN 0 0 0
STL 0 0 0
WIN 0 0 0
;

With the suffix values assigned as shown, CPLEX’s search for a solution turns out to
require fewer simplex iterations and fewer branch-and-bound nodes:

ampl: option reset_initial_guesses 1;

ampl: solve;
CPLEX 8.0.0: nodesel 3
varsel 1
backtrack 0.1
CPLEX 8.0.0: optimal integer solution; objective 235625
799 MIP simplex iterations
69 branch-and-bound nodes

(We have set option reset_initial_guesses to 1 so that the optimal solution from
the first CPLEX run won’t be sent back to the second.)

Further information about the suffixes recognized by CPLEX and how to determine
the corresponding settings can be found in the CPLEX driver documentation. Other
solver interfaces may recognize different suffixes for different purposes; you’ll need to
check separately for each solver you want to use.

298 INTERACTIONS WITH SOLVERS CHAPTER 14

Solver-defined suffixes: sensitivity analysis

When the keyword sensitivity is included in CPLEX’s list of directives, classical
sensitivity ranges are computed and are returned in three new suffixes, .up, .down, and
.current:

ampl: model steelT.mod; data steelT.dat;
ampl: option solver cplex;
ampl: option cplex_options ’sensitivity’;

ampl: solve;
CPLEX 8.0.0: sensitivity
CPLEX 8.0.0: optimal solution; objective 515033
16 dual simplex iterations (0 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;

The three lines at the end of the output from the solve command show the suffix
commands that are executed by AMPL in response to the results from the solver. These
statements are executed automatically; you do not need to type them. The argument OUT
in each command says that these are suffixes whose values will be written out by the
solver (in contrast to the previous example, where the argument IN indicated suffix val-
ues that the solver was to read in).

The sensitivity suffixes are interpreted as follows. For variables, suffix .current
indicates the objective function coefficient in the current problem, while .down and .up
give the smallest and largest values of the objective coefficient for which the current LP
basis remains optimal:

ampl: display Sell.down, Sell.current, Sell.up;
: Sell.down Sell.current Sell.up :=
bands 1 23.3 25 1e+20
bands 2 25.4 26 1e+20
bands 3 24.9 27 27.5
bands 4 10 27 29.1
coils 1 29.2857 30 30.8571
coils 2 33 35 1e+20
coils 3 35.2857 37 1e+20
coils 4 35.2857 39 1e+20
;

For constraints, the interpretation is similar except that it applies to a constraint’s constant
term (the so-called right-hand-side value):

ampl: display Time.down, Time.current, Time.up;
: Time.down Time.current Time.up :=
1 37.8071 40 66.3786
2 37.8071 40 47.8571
3 25 32 45
4 30 40 62.5
;

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES 299

You can use generic synonyms (Section 12.6) to display a table of ranges for all variables
or constraints, similar to the tables produced by the standalone version of CPLEX. (Val-
ues of -1e+20 in the .down column and 1e+20 in the .up column correspond to what
CPLEX calls -infinity and +infinity in its tables.)

Solver-defined suffixes: infeasibility diagnosis

For a linear program that has no feasible solution, you can ask CPLEX to find an irre-
ducible infeasible subset (or IIS): a collection of constraints and variable bounds that is
infeasible but that becomes feasible when any one constraint or bound is removed. If a
small IIS exists and can be found, it can provide valuable clues as to the source of the
infeasibility. You turn on the IIS finder by changing the iisfind directive from its
default value of 0 to either 1 (for a relatively fast version) or 2 (for a slower version that
tends to find a smaller IIS).

The following example shows how IIS finding might be applied to the infeasible diet
problem from Chapter 2. After solve detects that there is no feasible solution, it is
repeated with the directive ’iisfind 1’:

ampl: model diet.mod; data diet2.dat; option solver cplex;
ampl: solve;
CPLEX 8.0.0: infeasible problem.
4 dual simplex iterations (0 in phase I)
constraint.dunbdd returned
suffix dunbdd OUT;

ampl: option cplex_options ’iisfind 1’;
ampl: solve;
CPLEX 8.0.0: iisfind 1
CPLEX 8.0.0: infeasible problem.
0 simplex iterations (0 in phase I)
Returning iis of 7 variables and 2 constraints.
constraint.dunbdd returned

suffix iis symbolic OUT;

option iis_table ’\
0 non not in the iis\
1 low at lower bound\
2 fix fixed\
3 upp at upper bound\
’;

Again, AMPL shows any suffix statement that has been executed automatically. Our
interest is in the new suffix named .iis, which is symbolic, or string-valued. An
associated option iis_table, also set up by the solver driver and displayed automati-
cally by solve, shows the strings that may be associated with .iis and gives brief
descriptions of what they mean.

You can use display to look at the .iis values that have been returned:

300 INTERACTIONS WITH SOLVERS CHAPTER 14

ampl: display _varname, _var.iis, _conname, _con.iis;
: _varname _var.iis _conname _con.iis :=
1 "Buy[’BEEF’]" upp "Diet[’A’]" non
2 "Buy[’CHK’]" low "Diet[’B1’]" non
3 "Buy[’FISH’]" low "Diet[’B2’]" low
4 "Buy[’HAM’]" upp "Diet[’C’]" non
5 "Buy[’MCH’]" non "Diet[’NA’]" upp
6 "Buy[’MTL’]" upp "Diet[’CAL’]" non
7 "Buy[’SPG’]" low . .
8 "Buy[’TUR’]" low . .
;

This information indicates that the IIS consists of four lower and three upper bounds on
the variables, plus the constraints providing the lower bound on B2 and the upper bound
on NA in the diet. Together these restrictions have no feasible solution, but dropping any
one of them will permit a solution to be found to the remaining ones.

If dropping the bounds is not of interest, then you may want to list only the con-
straints in the IIS. A print statement produces a concise listing:

ampl: print {i in 1.._ncons:
ampl? _con[i].iis <> "non"}: _conname[i];
Diet[’B2’]
Diet[’NA’]

You could conclude in this case that, to avoid violating the bounds on amounts pur-
chased, you might need to accept either less vitamin B2 or more sodium, or both, in the
diet. Further experimentation would be necessary to determine how much less or more,
however, and what other changes you might need to accept in order to gain feasibility.
(A linear program can have several irreducible infeasible subsets, but CPLEX’s IIS-
finding algorithm detects only one IIS at a time.)

Solver-defined suffixes: direction of unboundedness

For an unbounded linear program — one that has in effect a minimum of
-Infinity or a maximum of +Infinity — a solver can return a ray of feasible solu-
tions of the form X + αd, where α ≥ 0. On return from CPLEX, the feasible solution X
is given by the values of the variables, while the direction of unboundedness d is given by
an additional value associated with each variable through the solver-defined suffix
.unbdd.

An application of the direction of unboundedness can be found in a model
trnloc1d.mod and script trnloc1d.run for Benders decomposition applied to a
combination of a warehouse-location and transportation problem; the model, data and
script are available from the AMPL web site. We won’t try to describe the whole decom-
position scheme here, but rather concentrate on the subproblem obtained by fixing the
zero-one variables Build[i], which indicate the warehouses that are to be built, to trial
values build[i]. In its dual form, this subproblem is:

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES 301

var Supply_Price {ORIG} <= 0;
var Demand_Price {DEST};
maximize Dual_Ship_Cost:

sum {i in ORIG} Supply_Price[i] * supply[i] * build[i] +
sum {j in DEST} Demand_Price[j] * demand[j];

subject to Dual_Ship {i in ORIG, j in DEST}:
Supply_Price[i] + Demand_Price[j] <= var_cost[i,j];

When all values build[i] are set to zero, no warehouses are built, and the primal sub-
problem is infeasible. As a result, the dual formulation of the subproblem, which always
has a feasible solution, must be unbounded.

As the remainder of this chapter will explain, we solve a subproblem by collecting its
components into an AMPL ‘‘problem’’ and then directing AMPL to solve only that prob-
lem. When this approach is applied to the dual subproblem from the AMPL command-
line, CPLEX returns the direction of unboundedness in the expected way:

ampl: model trnloc1d.mod;
ampl: data trnloc1.dat;
ampl: problem Sub: Supply_Price, Demand_Price,
ampl? Dual_Ship_Cost, Dual_Ship;
ampl: let {i in ORIG} build[i] := 0;
ampl: option solver cplex, cplex_options ’presolve 0’;
ampl: solve;
CPLEX 8.0.0: presolve 0
CPLEX 8.0.0: unbounded problem.
25 dual simplex iterations (25 in phase I)
variable.unbdd returned
6 extra simplex iterations for ray (1 in phase I)

suffix unbdd OUT;

The suffix message indicates that .unbdd has been created automatically. You can
use this suffix to display the direction of unboundedness, which is simple in this case:

ampl: display Supply_Price.unbdd;
Supply_Price.unbdd [*] :=
1 -1 4 -1 7 -1 10 -1 13 -1 16 -1 19 -1 22 -1 25 -1
2 -1 5 -1 8 -1 11 -1 14 -1 17 -1 20 -1 23 -1
3 -1 6 -1 9 -1 12 -1 15 -1 18 -1 21 -1 24 -1
;
ampl: display Demand_Price.unbdd;
Demand_Price.unbdd [*] :=
A3 1
A6 1
A8 1
A9 1
B2 1
B4 1
;

Our script for Benders decomposition (trnloc1d.run) solves the subproblem repeat-
edly, with differing build[i] values generated from the master problem. After each

302 INTERACTIONS WITH SOLVERS CHAPTER 14

solve, the result is tested for unboundedness and an extension of the master problem is
constructed accordingly. The essentials of the main loop are as follows:

repeat {
solve Sub;
if Dual_Ship_Cost <= Max_Ship_Cost + 0.00001 then break;
if Sub.result = "unbounded" then {

let nCUT := nCUT + 1;
let cut_type[nCUT] := "ray";
let {i in ORIG}

supply_price[i,nCUT] := Supply_Price[i].unbdd;
let {j in DEST}

demand_price[j,nCUT] := Demand_Price[j].unbdd;
} else {

let nCUT := nCUT + 1;
let cut_type[nCUT] := "point";
let {i in ORIG} supply_price[i,nCUT] := Supply_Price[i];
let {j in DEST} demand_price[j,nCUT] := Demand_Price[j];

}
solve Master;
let {i in ORIG} build[i] := Build[i];

}

An attempt to use .unbdd in this context fails, however:

ampl: commands trnloc1d.run;
trnloc1d.run, line 39 (offset 931):

Bad suffix .unbdd for Supply_Price
context: let {i in ORIG} supply_price[i,nCUT] :=

>>> Supply_Price[i].unbdd; <<<

The difficulty here is that AMPL scans all commands in the repeat loop before
beginning to execute any of them. As a result it encounters the use of .unbdd before
any infeasible subproblem has had a chance to cause this suffix to be defined. To make
this script run as intended, it is necessary to place the statement

suffix unbdd OUT;

in the script before the repeat loop, so that .unbdd is already defined at the time the
loop is scanned.

Defining and using suffixes

A new AMPL suffix is defined by a statement consisting of the keyword suffix fol-
lowed by a suffix-name and then one or more optional qualifiers that indicate what values
may be associated with the suffix and how it may be used. For example, we have seen
the definition

suffix priority IN, integer, >= 0, <= 9999;

for the suffix priority with in-out, type, and bound qualifiers.

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES 303

The suffix statement causes AMPL to recognize suffixed expressions of the form
component-name.suffix-name, where component-name refers to any currently declared
variable, constraint, or objective (or problem, as defined in the next section). The defini-
tion of a suffix remains in effect until the next reset command or the end of the current
AMPL session. The suffix-name is subject to the same rules as other names in AMPL.
Suffixes have a separate name space, however, so a suffix may have the same name as a
parameter, variable, or other model component. The optional qualifiers of the suffix
statement may appear in any order; their forms and effects are described below.

The optional type qualifier in a suffix statement indicates what values may be asso-
ciated with the suffixed expressions, with all numeric values being the default:

suffix type values allowed

none specified any numeric value
integer integer numeric values
binary 0 or 1
symbolic character strings listed in option suffix-name_table

All numeric-valued suffixed expressions have an initial value of 0. Their permissible val-
ues may be further limited by one or two bound qualifiers of the form

>= arith-expr
<= arith-expr

where arith-expr is any arithmetic expression not involving variables.
For each symbolic suffix, AMPL automatically defines an associated numeric suf-

fix, suffix-name_num. An AMPL option suffix-name_table must then be created to
define a relation between the .suffix-name and .suffix-name_num values, as in the fol-
lowing example:

suffix iis symbolic OUT;
option iis_table ’\
0 non not in the iis\
1 low at lower bound\
2 fix fixed\
3 upp at upper bound\
’;

Each line of the table consists of an integer value, a string value, and an optional com-
ment. Every string value is associated with its adjacent integer value, and with any
higher integer values that are less than the integer on the next line. Assigning a string
value to a .suffix-name expression is equivalent to assigning the associated numeric
value to a .suffix-name_num expression. The latter expressions are initially assigned the
value 0, and are subject to any type and bound qualifiers as described above. (Normally
the string values of symbolic suffixes are used in AMPL commands and scripts, while
the numeric values are used in communication with solvers.)

The optional in-out qualifier determines how suffix values interact with the solver:

304 INTERACTIONS WITH SOLVERS CHAPTER 14

in-out handling of suffix values

IN written by AMPL before invoking the solver, then read in by solver
OUT written out by solver, then read by AMPL after the solver is finished
INOUT both read and written, as for IN and OUT above
LOCAL neither read nor written

INOUT is the default if no in-out keyword is specified.
We have seen that suffixed expressions can be assigned or reassigned values by a let

statement:

let Use["GARY","FRE"].direction := -1;

Here just one variable is assigned a suffixed value, but often there are suffixed values for
all variables in an indexed collection:

var Use {ORIG,DEST} binary;
let {i in ORIG, j in DEST}

Use[i,j].priority := sum {p in PROD} demand[j,p];

In this case the assignment of suffix values can be combined with the variable’s declara-
tion:

var Use {i in ORIG, j in DEST} binary,
suffix priority sum {p in PROD} demand[j,p];

In general, one or more of the phrases in a var declaration may consist of the keyword
suffix followed by a previously-defined suffix-name and an expression for evaluating
the associated suffix expressions.

14.4 Alternating between models

Chapter 13 described how ‘‘scripts’’ of AMPL commands can be set up to run as pro-
grams that perform repetitive actions. In several examples, a script solves a series of
related model instances, by including a solve statement inside a loop. The result is a
simple kind of sensitivity analysis algorithm, programmed in AMPL’s command lan-
guage.

Much more powerful algorithmic procedures can be constructed by using two models.
An optimal solution for one model yields new data for the other, and the two are solved
in alternation in such a way that some termination condition must eventually be reached.
Classic methods of column and cut generation, decomposition, and Lagrangian relaxation
are based on schemes of this kind, which are described in detail in references cited at the
end of this chapter.

To use two models in this manner, a script must have some way of switching between
them. Switching can be done with previously defined AMPL features, or more clearly and
efficiently by defining separately-named problems and environments.

SECTION 14.4 ALTERNATING BETWEEN MODELS 305

We illustrate these possibilities through a script for a basic form of the ‘‘roll trim’’ or
‘‘cutting stock’’ problem, using a well-known, elementary column-generation procedure.
In the interest of brevity, we give only a sketchy description of the procedure here, while
the references at the end of this chapter provide sources for thorough descriptions. There
are several other examples of generation, decomposition, and relaxation schemes on the
AMPL web site, and we will also use a few excerpts from them later, without showing the
whole models.

In a roll trim problem, we wish to cut up long raw widths of some commodity such as
rolls of paper into a combination of smaller widths that meet given orders with as little
waste as possible. This problem can be viewed as deciding, for each raw-width roll,
where the cuts should be made so as to produce one or more of the smaller widths that
were ordered. Expressing such a problem in terms of decision variables is awkward,
however, and leads to an integer program that is difficult to solve except for very small
instances.

To derive a more manageable model, the so-called Gilmore-Gomory procedure
defines a cutting pattern to be any one feasible way in which a raw roll can be cut up. A
pattern thus consists of a certain number of rolls of each desired width, such that their
total width does not exceed the raw width. If (as in Exercise 2-6) the raw width is 110",
and there are demands for widths of 20", 45", 50", 55" and 75", then two rolls of 45" and
one of 20" make an acceptable pattern, as do one of 50" and one of 55" (with 5" of
waste). Given this view, the two simple linear programs in Figure 14-2 can be made to
work together to find an efficient cutting plan.

The cutting optimization model (Figure 14-2a) finds the minimum number of raw
rolls that need be cut, given a collection of known cutting patterns that may be used. This
is actually a close cousin to the diet model, with the variables representing patterns cut
rather than food items bought, and the constraints enforcing a lower limit on cut widths
rather than nutrients provided.

The pattern generation model (Figure 14-2b) seeks to identify a new pattern that can
be used in the cutting optimization, either to reduce the number of raw rolls needed, or to
determine that no such new pattern exists. The variables of this model are the numbers of
each desired width in the new pattern; the single constraint ensures that the total width of
the pattern does not exceed the raw width. We won’t try to explain the objective here,
except to note that the coefficient of a variable is given by its corresponding ‘‘dual
value’’ or ‘‘dual price’’ from the linear relaxation of the cutting optimization model.

We can search for a good cutting plan by solving these two problems repeatedly in
alternation. First the continuous-variable relaxation of the cutting optimization problem
generates some dual prices, then the pattern generation problem uses the prices to gener-
ate a new pattern, and then the procedure repeats with the collection of patterns extended
by one. We stop repeating when the pattern generation problem indicates that no new
pattern can lead to an improvement. We then have the best possible solution in terms of
(possibly) fractional numbers of raw rolls cut. We may make one last run of the cutting
optimization model with the integrality restriction restored, to get the best integral solu-

306 INTERACTIONS WITH SOLVERS CHAPTER 14

__
__

param roll_width > 0; # width of raw rolls

set WIDTHS; # set of widths to be cut
param orders {WIDTHS} > 0; # number of each width to be cut

param nPAT integer >= 0; # number of patterns
set PATTERNS = 1..nPAT; # set of patterns

param nbr {WIDTHS,PATTERNS} integer >= 0;
check {j in PATTERNS}:

sum {i in WIDTHS} i * nbr[i,j] <= roll_width;
defn of patterns: nbr[i,j] = number
of rolls of width i in pattern j

var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern

minimize Number: # minimize total raw rolls cut
sum {j in PATTERNS} Cut[j];

subject to Fill {i in WIDTHS}:
sum {j in PATTERNS} nbr[i,j] * Cut[j] >= orders[i];

for each width, total rolls cut meets total orders

Figure 14-2a: Pattern-based model for cutting optimization problem (cut.mod).

param price {WIDTHS} default 0.0; # prices from cutting opt
var Use {WIDTHS} integer >= 0;

numbers of each width in pattern
minimize Reduced_Cost:

1 - sum {i in WIDTHS} price[i] * Use[i];

subject to Width_Limit:
sum {i in WIDTHS} i * Use[i] <= roll_width;

Figure 14-2b: Knapsack model for pattern generation problem (cut.mod, continued).
__

tion using the patterns generated, or we may simply round the fractional numbers of rolls
up to the next largest integers if that gives an acceptable result.

This is the Gilmore-Gomory procedure. In terms of our two AMPL models, its steps
may be described as follows:

pick initial patterns sufficient to meet demand
repeat

solve the (fractional) cutting optimization problem
let price[i] equal Fill[i].dual for each pattern i
solve the pattern generation problem
if the optimal value is < 0 then

add a new pattern that cuts Use[i] rolls of each width i
else

find a final integer solution and stop

SECTION 14.4 ALTERNATING BETWEEN MODELS 307

An easy way to initialize is to generate one pattern for each width, containing as many
copies of that width as will fit inside the raw roll. These patterns clearly can cover any
demands, though not necessarily in an economical way.

An implementation of the Gilmore-Gomory procedure as an AMPL script is shown in
Figure 14-3. The file cut.mod contains both the cutting optimization and pattern gener-
ation models in Figure 14-2. Since these models have no variables or constraints in com-
mon, it would be possible to write the script with simple solve statements using alter-
nating objective functions:

repeat {
objective Number;
solve;
...

objective Reduced_Cost;
solve;
...

}

Under this approach, however, every solve would send the solver all of the variables
and constraints generated by both models. Such an arrangement is inefficient and prone
to error, especially for larger and more complex iterative procedures.

We could instead ensure that only the immediately relevant variables and constraints
are sent to the solver, by using fix and drop commands to suppress the others. Then
the outline of our loop would look like this:

repeat {
unfix Cut; restore Fill; objective Number;
fix Use; drop Width_Limit;
solve;
...
unfix Use; restore Width_Limit; objective Reduced_Cost;
fix Cut; drop Fill;
solve;
...

}

Before each solve, the previously fixed variables and dropped constraints must also be
brought back, by use of unfix and restore. This approach is efficient, but it remains
highly error-prone, and makes scripts difficult to read.

As an alternative, therefore, AMPL allows models to be distinguished by use of the
problem statement seen in Figure 14-3:

problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

The first statement defines a problem named Cutting_Opt that consists of the Cut
variables, the Fill constraints, and the objective Number. This statement also makes

308 INTERACTIONS WITH SOLVERS CHAPTER 14

__
__

model cut.mod;
data cut.dat;
option solver cplex, solution_round 6;
option display_1col 0, display_transpose -10;

problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

let nPAT := 0;
for {i in WIDTHS} {

let nPAT := nPAT + 1;
let nbr[i,nPAT] := floor (roll_width/i);
let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;

}

repeat {
solve Cutting_Opt;
let {i in WIDTHS} price[i] := Fill[i].dual;

solve Pattern_Gen;
if Reduced_Cost < -0.00001 then {

let nPAT := nPAT + 1;
let {i in WIDTHS} nbr[i,nPAT] := Use[i];

}
else break;

}
display nbr, Cut;

option Cutting_Opt.relax_integrality 0;
solve Cutting_Opt;
display Cut;

Figure 14-3: Gilmore-Gomory procedure for cutting-stock problem (cut.run).
__

Cutting_Opt the current problem; uses of the var, minimize, maximize, sub-
ject to, and option statements now apply to this problem only. Thus by setting
option relax_integrality to 1 above, for example, we assure that the integrality
condition on the Cut variables will be relaxed whenever Cutting_Opt is current. In a
similar way, we define a problem Pattern_Gen that consists of the Use variables, the
Width_Limit constraint, and the objective Reduced_Cost; this in turn becomes the
current problem, and this time we set relax_integrality to 0 because only integer
solutions to this problem are meaningful.

The for loop in Figure 14-3 creates the initial cutting patterns, after which the main
repeat loop carries out the Gilmore-Gomory procedure as described previously. The
statement

solve Cutting_Opt;

SECTION 14.5 NAMED PROBLEMS 309

__
__

param roll_width := 110 ;
param: WIDTHS: orders :=

20 48
45 35
50 24
55 10
75 8 ;

Figure 14-4: Data for cutting-stock model (cut.dat)
__

restores Cutting_Opt as the current problem, along with its environment, and solves
the associated linear program. Then the assignment

let {i in WIDTHS} price[i] := Fill[i].dual;

transfers the optimal dual prices from Cutting_Opt to the parameters price[i] that
will be used by Pattern_Gen. All sets and parameters are global in AMPL, so they can
be referenced or changed whatever the current problem.

The second half of the main loop makes problem Pattern_Gen and its environ-
ment current, and sends the associated integer program to the solver. If the resulting
objective is sufficiently negative, the pattern returned by the Use[i] variables is added
to the data that will be used by Cutting_Opt in the next pass through the loop. Other-
wise no further progress can be made, and the loop is terminated.

The script concludes with the following statements, to solve for the best integer solu-
tion using all patterns generated:

option Cutting_Opt.relax_integrality 0;
solve Cutting_Opt;

The expression Cutting_Opt.relax_integrality stands for the value of the
relax_integrality option in the Cutting_Opt environment. We discuss these
kinds of names and their uses at greater length in the next section.

As an example of how this works, Figure 14-4 shows data for cutting 110" raw rolls,
to meet demands of 48, 35, 24, 10 and 8 for finished rolls of widths 20, 45, 50, 55 and 75,
respectively. Figure 14-5 shows the output that occurs when Figure 14-3’s script is run
with the model and data as shown in Figures 14-2 and 14-4. The best fractional solution
cuts 46.25 raw rolls in five different patterns, using 48 rolls if the fractional values are
rounded up to the next integer. The final solve using integer variables shows how a
collection of six of the patterns can be applied to meet demand using only 47 raw rolls.

14.5 Named problems

As our cutting-stock example has shown, the key to writing a clear and efficient script
for alternating between two (or more) models lies in working with named problems that

310 INTERACTIONS WITH SOLVERS CHAPTER 14

__
__

ampl: commands cut.run;

CPLEX 8.0.0: optimal solution; objective 52.1
0 dual simplex iterations (0 in phase I)
CPLEX 8.0.0: optimal integer solution; objective -0.2
1 MIP simplex iterations
0 branch-and-bound nodes
CPLEX 8.0.0: optimal solution; objective 48.6
2 dual simplex iterations (0 in phase I)
CPLEX 8.0.0: optimal integer solution; objective -0.2
2 MIP simplex iterations
0 branch-and-bound nodes
CPLEX 8.0.0: optimal solution; objective 47
1 dual simplex iterations (0 in phase I)
CPLEX 8.0.0: optimal integer solution; objective -0.1
2 MIP simplex iterations
0 branch-and-bound nodes
CPLEX 8.0.0: optimal solution; objective 46.25
2 dual simplex iterations (0 in phase I)
CPLEX 8.0.0: optimal integer solution; objective -1e-06
8 MIP simplex iterations
0 branch-and-bound nodes

nbr [*,*]
: 1 2 3 4 5 6 7 8 :=
20 5 0 0 0 0 1 1 3
45 0 2 0 0 0 2 0 0
50 0 0 2 0 0 0 0 1
55 0 0 0 2 0 0 0 0
75 0 0 0 0 1 0 1 0
;

Cut [*] :=
1 0 2 0 3 8.25 4 5 5 0 6 17.5 7 8 8 7.5
;

CPLEX 8.0.0: optimal integer solution; objective 47
5 MIP simplex iterations
0 branch-and-bound nodes

Cut [*] :=
1 0 2 0 3 8 4 5 5 0 6 18 7 8 8 8
;

Figure 14-5: Output from execution of Figure 14-3 cutting-stock script.
__

represent different subsets of model components. In this section we describe in more
detail how AMPL’s problem statement is employed to define, use, and display named
problems. At the end we also introduce a similar idea, named environments, which facili-
tates switching between collections of AMPL options.

SECTION 14.5 NAMED PROBLEMS 311

Illustrations in this section are taken from the cutting-stock script and from some of
the other example scripts on the AMPL web site. An explanation of the logic behind these
scripts is beyond the scope of this book; some suggestions for learning more are given in
the references at the end of the chapter.

Defining named problems

At any point during an AMPL session, there is a current problem consisting of a list of
variables, objectives and constraints. The current problem is named Initial by
default, and comprises all variables, objectives and constraints defined so far. You can
define other ‘‘named’’ problems consisting of subsets of these components, however, and
can make them current. When a named problem is made current, all of the model compo-
nents in the problem’s subset are made active, while all other variables, objectives and
constraints are made inactive. More precisely, variables in the problem’s subset are
unfixed and the remainder are fixed at their current values. Objectives and constraints in
the problem’s subset are restored and the remainder are dropped. (Fixing and dropping
are discussed in Section 11.4.)

You can define a problem most straightforwardly through a problem declaration
that gives the problem’s name and its list of components. Thus in Figure 14-3 we have:

problem Cutting_Opt: Cut, Number, Fill;

A new problem named Cutting_Opt is defined, and is specified to contain all of the
Cut variables, the objective Number, and all of the Fill constraints from the model in
Figure 14-2. At the same time, Cutting_Opt becomes the current problem. Any fixed
Cut variables are unfixed, while all other declared variables are fixed at their current val-
ues. The objective Number is restored if it had been previously dropped, while all other
declared objectives are dropped; and similarly any dropped Fill constraints are
restored, while all other declared constraints are dropped.

For more complex models, the list of a problem’s components typically includes sev-
eral collections of variables and constraints, as in this example from stoch1.run (one
of the examples from the AMPL web site):

problem Sub: Make, Inv, Sell,
Stage2_Profit, Time, Balance2, Balance;

By specifying an indexing-expression after the problem name, you can define an indexed
collection of problems, such as these in multi2.run (another web site example):

problem SubII {p in PROD}: Reduced_Cost[p],
{i in ORIG, j in DEST} Trans[i,j,p],
{i in ORIG} Supply[i,p], {j in DEST} Demand[j,p];

For each p in the set PROD, a problem SubII[p] is defined. Its components include
the objective Reduced_Cost[p], the variables Trans[i,j,p] for each combina-
tion of i in ORIG and j in DEST, and the constraints Supply[i,p] and
Demand[j,p] for each i in ORIG and each j in DEST, respectively.

312 INTERACTIONS WITH SOLVERS CHAPTER 14

A problem declaration’s form and interpretation naturally resemble those of other
AMPL statements that specify lists of model components. The declaration begins with the
keyword problem, a problem name not previously used for any other model compo-
nent, an optional indexing expression (to define an indexed collection of problems), and a
colon. Following the colon is the comma-separated list of variables, objectives and con-
straints to be included in the problem. This list may contain items of any of the following
forms, where ‘‘component’’ refers to any variable, objective or constraint:

• A component name, such as Cut or Fill, which refers to all components
having that name.

• A subscripted component name, such as Reduced_Cost[p], which
refers to that component alone.

• An indexing expression followed by a subscripted component name, such
as {i in ORIG} Supply[i,p], which refers to one component for each
member of the indexing set.

To save the trouble of repeating an indexing expression when several components are
indexed in the same way, the problem statement also allows an indexing expression fol-
lowed by a parenthesized list of components. Thus for example the following would be
equivalent:

{i in ORIG} Supply1[i,p], {i in ORIG} Supply2[i,p],
{i in ORIG, j in DEST} Trans[i,j,p],
{i in ORIG, j in DEST} Use[i,j,p]

{i in ORIG} (Supply1[i,p], Supply2[i,p],
{j in DEST} (Trans[i,j,p], Use[i,j,p]))

As these examples show, the list inside the parentheses may contain any item that is valid
in a component list, even an indexing expression followed by another parenthesized list.
This sort of recursion is also found in AMPL’s print command, but is more general
than the list format allowed in display commands.

Whenever a variable, objective or constraint is declared, it is automatically added to
the current problem (or all current problems, if the most recent problem statement spec-
ified an indexed collection of problems). Thus in our cutting-stock example, all of Figure
14-2’s model components are first placed by default into the problem Initial; then,
when the script of Figure 14-3 is run, the components are divided into the problems
Cutting_Opt and Pattern_Gen by use of problem statements. As an alternative,
we can declare empty problems and then fill in their members through AMPL declara-
tions. Figure 14-6 (cut2.mod) shows how this would be done for the Figure 14-2 mod-
els. This approach is sometimes clearer or easier for simpler applications.

Any use of drop/restore or fix/unfix also modifies the current problem. The
drop command has the effect of removing constraints or objectives from the current
problem, while the restore command has the effect of adding constraints or objectives.
Similarly, the fix command removes variables from the current problem and the unfix

SECTION 14.5 NAMED PROBLEMS 313

__
__

problem Cutting_Opt;

param nPAT integer >= 0, default 0;
param roll_width;
set PATTERNS = 1..nPAT;
set WIDTHS;
param orders {WIDTHS} > 0;
param nbr {WIDTHS,PATTERNS} integer >= 0;

check {j in PATTERNS}:
sum {i in WIDTHS} i * nbr[i,j] <= roll_width;

var Cut {PATTERNS} >= 0;
minimize Number: sum {j in PATTERNS} Cut[j];
subject to Fill {i in WIDTHS}:

sum {j in PATTERNS} nbr[i,j] * Cut[j] >= orders[i];

problem Pattern_Gen;

param price {WIDTHS};
var Use {WIDTHS} integer >= 0;
minimize Reduced_Cost:

1 - sum {i in WIDTHS} price[i] * Use[i];
subject to Width_Limit:

sum {i in WIDTHS} i * Use[i] <= roll_width;

Figure 14-6: Alternate definition of named cutting-stock problems (cut2.mod).
__

command adds variables. As an example, multi1.run uses the following problem
statements:

problem MasterI: Artificial, Weight, Excess, Multi, Convex;
problem SubI: Artif_Reduced_Cost, Trans, Supply, Demand;

problem MasterII: Total_Cost, Weight, Multi, Convex;
problem SubII: Reduced_Cost, Trans, Supply, Demand;

to define named problems for phases I and II of its decomposition procedure. By con-
trast, multi1a.run specifies

problem Master: Artificial, Weight, Excess, Multi, Convex;
problem Sub: Artif_Reduced_Cost, Trans, Supply, Demand;

to define the problems initially, and then

problem Master;
drop Artificial; restore Total_Cost; fix Excess;

problem Sub;
drop Artif_Reduced_Cost; restore Reduced_Cost;

when the time comes to convert the problems to a form appropriate for the second phase.
Since the names Master and Sub are used throughout the procedure, one loop in the
script suffices to implement both phases.

314 INTERACTIONS WITH SOLVERS CHAPTER 14

Alternatively, a redeclare problem statement can give a new definition for a
problem. The drop, restore, and fix commands above could be replaced, for
instance, by

redeclare problem Master: Total_Cost, Weight, Multi, Convex;
redeclare problem Sub: Reduced_Cost, Trans, Supply, Demand;

Like other declarations, however, this cannot be used within a compound statement (if,
for or repeat) and so cannot be used in the multi1a.run example.

A form of the reset command lets you undo any changes made to the definition of a
problem. For example,

reset problem Cutting_Opt;

resets the definition of Cutting_Opt to the list of components in the problem state-
ment that most recently defined it.

Using named problems

We next describe alternatives for changing the current problem. Any change will in
general cause different objectives and constraints to be dropped, and different variables to
be fixed, with the result that a different optimization problem is generated for the solver.
The values associated with model components are not affected simply by a change in the
current problem, however. All previously declared components are accessible regardless
of the current problem, and they keep the same values unless they are explicitly changed
by let or data statements, or by a solve in the case of variable and objective values
and related quantities (such as dual values, slacks, and reduced costs).

Any problem statement that refers to only one problem (not an indexed collection
of problems) has the effect of making that problem current. As an example, at the begin-
ning of the cutting-stock script we want to make first one and then the other named prob-
lem current, so that we can adjust certain options in the environments of the problems.
The problem statements in cut1.run (Figure 14-3):

problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

serve both to define the new problems and to make those problems current. The analo-
gous statements in cut2.run are simpler:

problem Cutting_Opt;
option relax_integrality 1;

problem Pattern_Gen;
option relax_integrality 0;

These statements serve only to make the named problems current, because the problems
have already been defined by problem statements in cut2.mod (Figure 14-6).

SECTION 14.5 NAMED PROBLEMS 315

A problem statement may also refer to an indexed collection of problems, as in the
multi2.run example cited previously:

problem SubII {p in PROD}: Reduced_Cost[p], ...

This form defines potentially many problems, one for each member of the set PROD.
Subsequent problem statements can make members of a collection current one at a time,
as in a loop having the form

for {p in PROD} {
problem SubII[p];
...

}

or in a statement such as problem SubII["coils"] that refers to a particular mem-
ber.

As seen in previous examples, the solve statement can also include a problem name,
in which case the named problem is made current and then sent to the solver. The effect
of a statement such as solve Pattern_Gen is thus exactly the same as the effect of
problem Pattern_Gen followed by solve.

Displaying named problems

The command consisting of problem alone tells which problem is current:

ampl: model cut.mod;
ampl: data cut.dat;
ampl: problem;
problem Initial;

ampl: problem Cutting_Opt: Cut, Number, Fill;
ampl: problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
ampl: problem;
problem Pattern_Gen;

The current problem is always Initial until other named problems have been defined.
The show command can give a list of the named problems that have been defined:

ampl: show problems;
problems: Cutting_Opt Pattern_Gen

We can also use show to see the variables, objectives and constraints that make up a par-
ticular problem or indexed collection of problems:

ampl: show Cutting_Opt, Pattern_Gen;
problem Cutting_Opt: Fill, Number, Cut;
problem Pattern_Gen: Width_Limit, Reduced_Cost, Use;

and use expand to see the explicit objectives and constraints of the current problem,
after all data values have been substituted:

316 INTERACTIONS WITH SOLVERS CHAPTER 14

ampl: expand Pattern_Gen;
minimize Reduced_Cost:

-0.166667*Use[20] - 0.416667*Use[45] - 0.5*Use[50]
- 0.5*Use[55] - 0.833333*Use[75] + 1;

subject to Width_Limit:
20*Use[20] + 45*Use[45] + 50*Use[50] + 55*Use[55] +
75*Use[75] <= 110;

See Section 12.6 for further discussion of show and expand.

Defining and using named environments

In the same way that there is a current problem at any point in an AMPL session, there
is also a current environment. Whereas a problem is a list of non-fixed variables and
non-dropped objectives and constraints, an environment records the values of all AMPL
options. By naming different environments, a script can easily switch between different
collections of option settings.

In the default mode of operation, which is sufficient for many purposes, the current
environment always has the same name as the current problem. At the start of an AMPL
session the current environment is named Initial, and each subsequent problem
statement that defines a new named problem also defines a new environment having the
same name as the problem. An environment initially inherits all the option settings that
existed when it was created, but it retains new settings that are made while it is current.
Any problem or solve statement that changes the current problem also switches to the
correspondingly named environment, with options set accordingly.

As an example, our script for the cutting stock problem (Figure 14-3) sets up the
model and data and then proceeds as follows:

option solver cplex, solution_round 6;
option display_1col 0, display_transpose -10;

problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

Options solver and three others are changed (by the first two option statements)
before any of the problem statements; hence their new settings are inherited by subse-
quently defined environments and are the same throughout the rest of the script. Next a
problem statement defines a new problem and a new environment named
Cutting_Opt, and makes them current. The ensuing option statement changes
relax_integrality to 1. Thereafter, when Cutting_Opt is the current problem
(and environment) in the script, relax_integrality will have the value 1. Finally,
another problem and option statement do much the same for problem (and environ-
ment) Pattern_Gen, except that relax_integrality is set back to 0 in that envi-
ronment.

SECTION 14.5 NAMED PROBLEMS 317

The result of these initial statements is to guarantee a proper setup for each of the sub-
sequent solve statements in the repeat loop. The result of solve Cutting_Opt is to
set the current environment to Cutting_Opt, thereby setting relax_integrality
to 1 and causing the linear relaxation of the cutting optimization problem to be solved.
Similarly the result of solve Pattern_Gen is to cause the pattern generation problem
to be solved as an integer program. We could instead have used option statements
within the loop to switch the setting of relax_integrality, but with this approach
we have kept the loop — the key part of the script — as simple as possible.

In more complex situations, you can declare named environments independently of
named problems, by use of a statement that consists of the keyword environ followed
by a name:

environ Master;

Environments have their own name space. If the name has not been used previously as
an environment name, it is defined as one and is associated with all of the current option
values. Otherwise, the statement has the effect of making that environment (and its asso-
ciated option values) current.

A previously declared environment may also be associated with the declaration of a
new named problem, by placing environ and the environment name before the colon in
the problem statement:

problem MasterII environ Master: ...

The named environment is then automatically made current whenever the associated
problem becomes current. The usual creation of an environment having the same name
as the problem is overridden in this case.

An indexed collection of environments may be declared in an environ statement by
placing an AMPL indexing expression after the environment name. The name is then
‘‘subscripted’’ in the usual way to refer to individual environments.

Named environments handle changes in the same way as named problems. If an
option’s value is changed while some particular environment is current, the new value is
recorded and is the value that will be reinstated whenever that environment is made cur-
rent again.

Bibliography

Vas ˇek Chva ´ tal, Linear Programming. Freeman (New York, NY, 1983). A general introduction to
linear programming that has chapters on the cutting-stock problem sketched in Section 14.4 and on
the Dantzig-Wolfe decomposition procedure that is behind the multi examples cited in Section
14.5.

Marshall L. Fisher, ‘‘An Applications Oriented Guide to Lagrangian Relaxation.’’ Interfaces 15, 2
(1985) pp. 10–21. An introduction to the Lagrangian relaxation procedures underlying the trn-
loc2 script of Section 14.3.

318 INTERACTIONS WITH SOLVERS CHAPTER 14

Robert Fourer and David M. Gay, ‘‘Experience with a Primal Presolve Algorithm.’’ In Large
Scale Optimization: State of the Art, W. W. Hager, D. W. Hearn and P. M. Pardalos, eds., Kluwer
Academic Publishers (Dordrecht, The Netherlands, 1994) pp. 135–154. A detailed description of
the presolve procedure sketched in Section 14.1.

Robert W. Haessler, ‘‘Selection and Design of Heuristic Procedures for Solving Roll Trim Prob-
lems.’’ Management Science 34, 12 (1988) pp. 1460–1471. Descriptions of real cutting-stock
problems, some amenable to the techniques of Section 14.4 and some not.

Leon S. Lasdon, Optimization Theory for Large Systems. Macmillan (New York, NY, 1970),
reprinted by Dover (Mineola, NY, 2002). A classic source for several of the decomposition and
generation procedures behind the scripts.

